Speaker verification and spoken language identification using a generalized i-vector framework with phonetic tokenizations and tandem features
نویسندگان
چکیده
This paper presents a generalized i-vector framework with phonetic tokenizations and tandem features for speaker verification as well as language identification. First, the tokens for calculating the zero-order statistics is extended from the MFCC trained Gaussian Mixture Models (GMM) components to phonetic phonemes, 3-grams and tandem feature trained GMM components using phoneme posterior probabilities. Second, given the calculated zero-order statistics (posterior probabilities on tokens), the feature used to calculate the first-order statistics is also extended from MFCC to tandem features and is not necessarily the same feature employed by the tokenizer. Third, the zero-order and first-order statistics vectors are then concatenated and represented by the simplified supervised i-vector approach followed by the standard back end modeling methods. We study different system setups with different tokens and features. Finally, selected effective systems are fused at the score level to further improve the performance. Experimental results are reported on the NIST SRE 2010 common condition 5 female part task and the NIST LRE 2007 closed set 30 seconds task for speaker verification and language identification, respectively. The proposed generalized i-vector framework outperforms the i-vector baseline by relatively 45% in terms of equal error rate (EER) and norm minDCF values.
منابع مشابه
مقایسه روش های طیفی برای شناسایی زبان گفتاری
Identifying spoken language automatically is to identify a language from the speech signal. Language identification systems can be divided into two categories, spectral-based methods and phonetic-based methods. In the former, short-time characteristics of speech spectrum are extracted as a multi-dimensional vector. The statistical model of these features is then obtained for each language. The ...
متن کاملGeneralized I-vector Representation with Phonetic Tokenizations and Tandem Features for both Text Independent and Text Dependent Speaker Verification
This paper presents a generalized i-vector representation framework with phonetic tokenization and tandem features for text independent as well as text dependent speaker verification. In the conventional i-vector framework, the tokens for calculating the zeroorder and first-order Baum-Welch statistics are Gaussian Mixture Model (GMM) components trained from acoustic level MFCC features. Yet bes...
متن کاملSpoken language identification using score vector modeling and support vector machine
The support vector machine (SVM) framework based on generalized linear discriminate sequence (GLDS) kernel has been shown effective and widely used in language identification tasks. In this paper, in order to compensate the distortions due to inter-speaker variability within the same language and solve the practical limitation of computer memory requested by large database training, multiple sp...
متن کاملAnalysis of i-vector framework for speaker identification in TV-shows
Inspired from the Joint Factor Analysis, the I-vector-based analysis has become the most popular and state-of-the-art framework for the speaker verification task. Mainly applied within the NIST/SRE evaluation campaigns, many studies have been proposed to improve more and more performance of speaker verification systems. Nevertheless, while the i-vector framework has been used in other speech pr...
متن کاملPertinent Prosodic Features for Speaker Identification by Voice
Most existing systems of speaker recognition use “state of the art” acoustic features. However, many times one can only recognize a speaker by his or her prosodic features, especially by the accent. For this reason, the authors investigate some pertinent prosodic features that can be associated with other classic acoustic features, in order to improve the recognition accuracy. The authors have ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014